Geo-spatial Traffic Behaviour Analysis and Anomaly Detection TU/e. Surveillance and Safety lab

ePicture This, 2024

Dr. ir. Egor Bondarev, associate professor, SPS-VCA

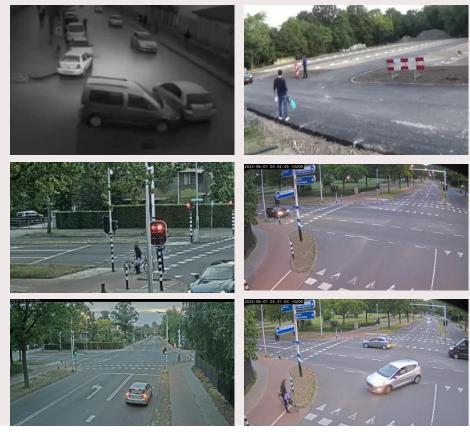
FI SP

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

11

Intro: Traffic Anomalies

- Accidents
- Throwing and littering
- Illegal turning
- Opposite lane driving
- Zig zag driving
- Side lane parking
- Illegal crossing (biker, pedestrian)
- Violence
- Robbery
- Infrastructure collapse
- etc



Intro: Challenges in anomalous behaviour detection

- 1. Anomalies are rare events, training data cannot be collected in vast amounts
- 2. Anomaly types are limitless: you never know them in advance
- 3. Visual analysis of the actor's pixels is not enough: context is needed:
 - Robbery or helping an old lady to carry a bag?
 - Drug selling to a driver or helping the driver with directions?
 - Infrastructure attack or a repairman working?
 - Opposite lane driving need to know the lane direction
 - Zig zag driving need to know the lane shape
 - Side lane parking need to know the traffic signs around
 - Illegal crossing (biker, pedestrian) need to know road markings

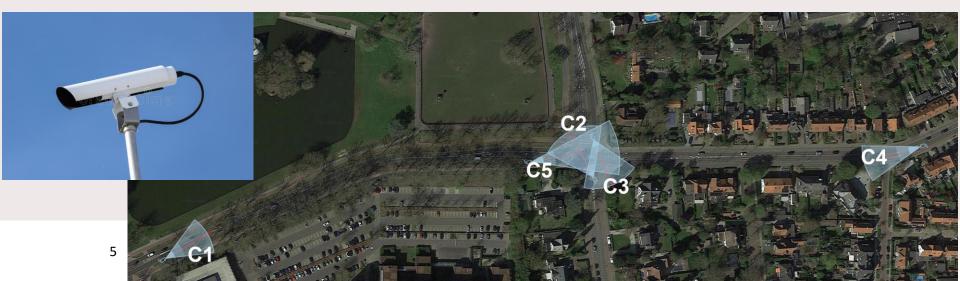
Intro: How to take the context into account?

Three principles

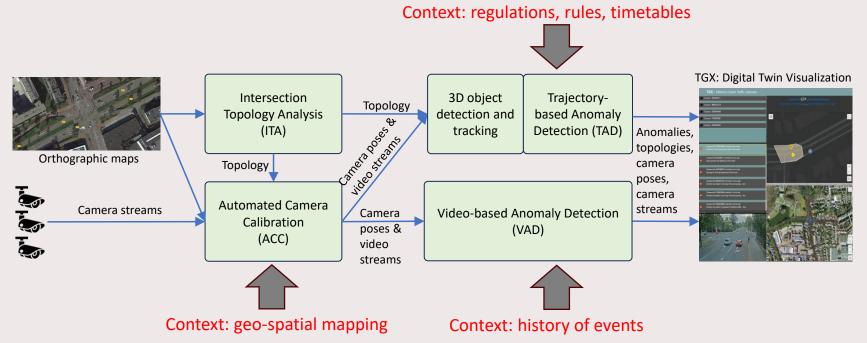
- 1. Observe, understand and remember the history of events preceding the anomaly
- 2. Bring the city/traffic regulations, rules, timetables into the analysis
- 3. Map the video (radar, acoustic) data onto the geo-spatial topological ground

SMART project: Fieldlab Helmond

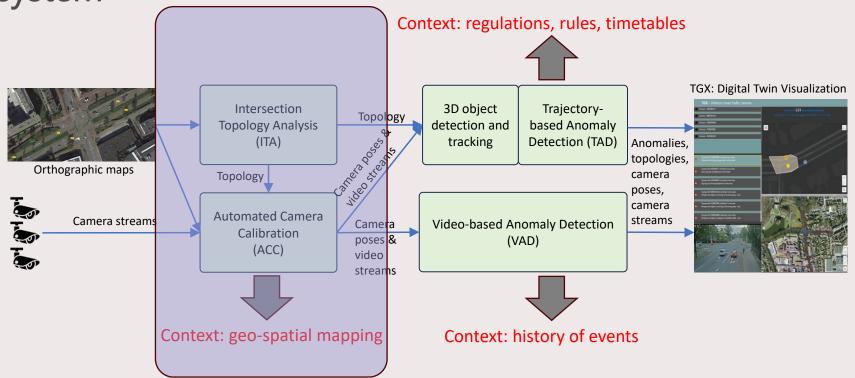
- 2021 2023
- Partners: Royal Haskoning, Vinotion, CycloMedia, ESRI, TUE
- 5 cameras, ~100 TB traffic data
- Played anomalies
- Different traffic participants vehicles, bikers, pedestrians



Architecture of SMART: geo-spatial anomaly detection system



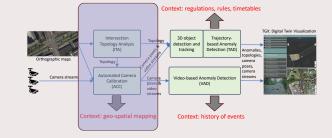
Architecture of SMART: geo-spatial anomaly detection system



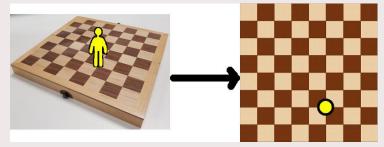
Automated camera calibration

Detecting an anomaly in traffic requires an accurate and automated camera calibration:

- Some anomalies are correct actions performed in a wrong place → localizing the anomaly in real-world coordinates is very important
- Traffic cameras are mounted on lightposts and their pose can be altered by wind, vehicles passing by etc...
- The cameras need to be calibrated often and automatically with any weather or traffic condition

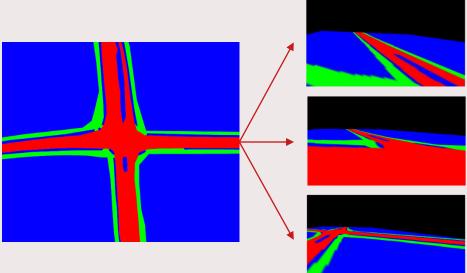


Calibration enables homography transformation



Idea: synthesize dataset of images from virtual camera poses

- Take an intersection image from Google satellite imagery: birds-eye-view (BEV)
- 2. Semantically segment the image
- 3. Sample virtual camera with different focal length, locations and rotation angles to create homography matrices
- Create training dataset: synthetic images (thousands) by warping the semantic bird's-eyeview with the sampled homographies

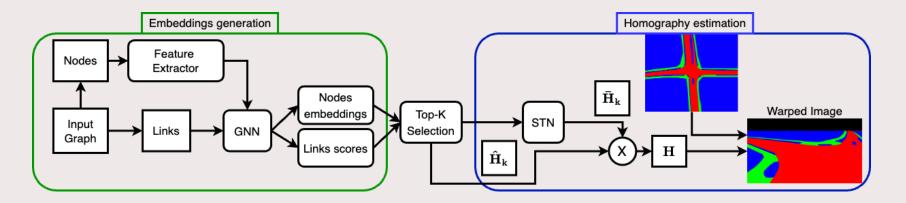


Homography estimation: automated camera calibration

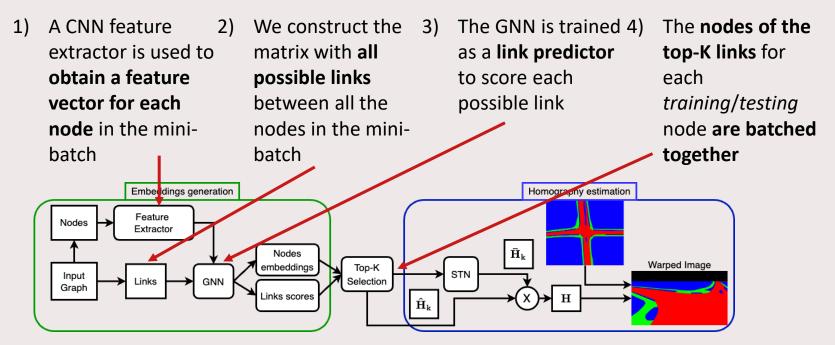
The proposed framework consists in two main components:

- Embeddings generation finding nearest virtual viewpoint for our camera view
- Homography estimation

The embeddings generation component is trained individually and then end-to-end along with the homography estimation component

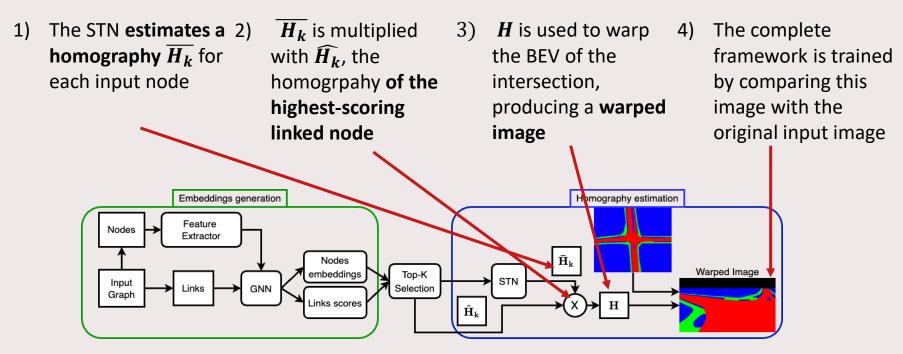


Methodology - Embedding Generation



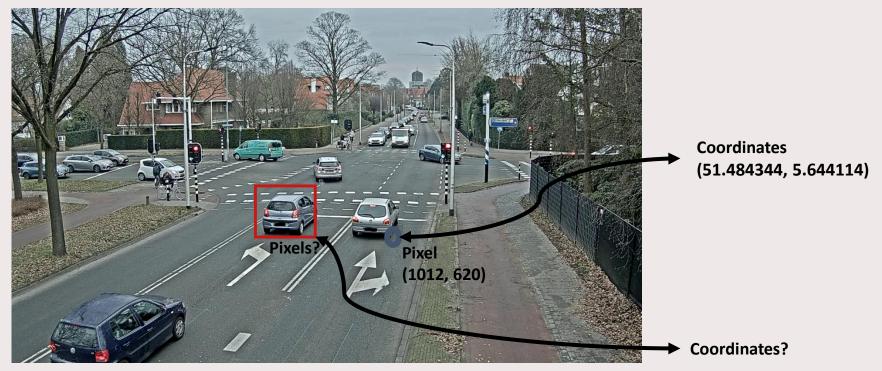
Overview of the homography estimation framework

Methodology – Homography Estimation



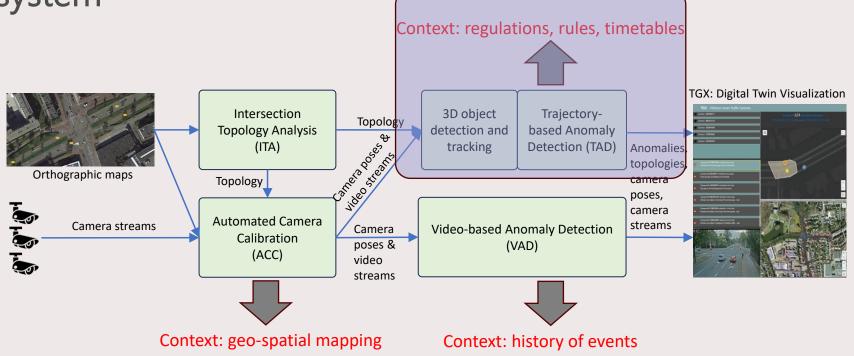
Overview of the homography estimation framework

Now we are able to map a pixel to real-world coordinates!

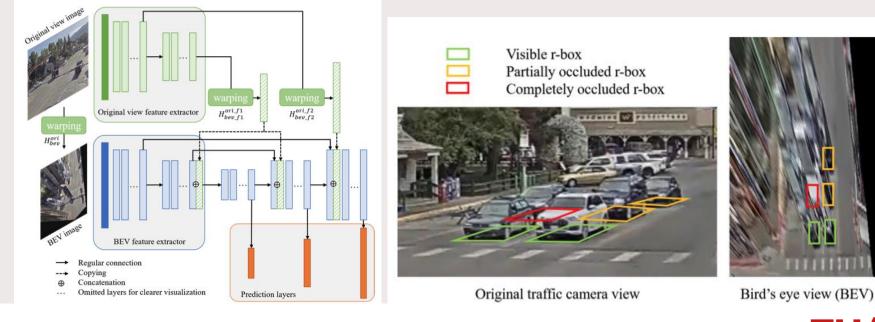


How can we map the agents to real-world coordinates?

Architecture of SMART: geo-spatial anomaly detection system



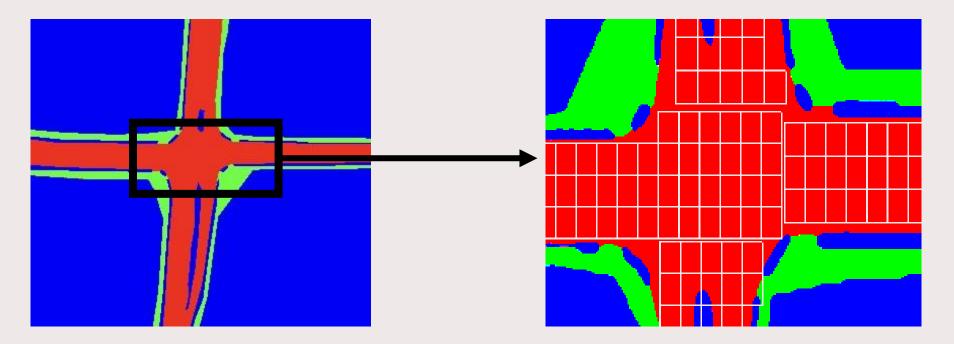
We leveraged the homography estimation component to detect the agents and obtain their 3D bounding boxes.



Detect Agents and their 3D Bounding Boxes

Create a grid for an intersection

The semantic regions of the intersection are split in grid with a fine granularity



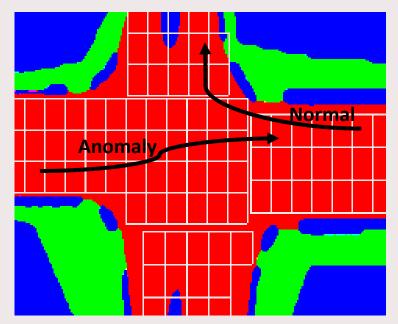
Train a normality model from standard moving trajectories

From 5TB of videos

- The agents are detected (3D bounding boxes) + at each timestamp their position is assigned to a grid cell.
- In this setting, we can learn the normal time spent in a cell and normality graph between cells.

Most importantly, this allows us to:

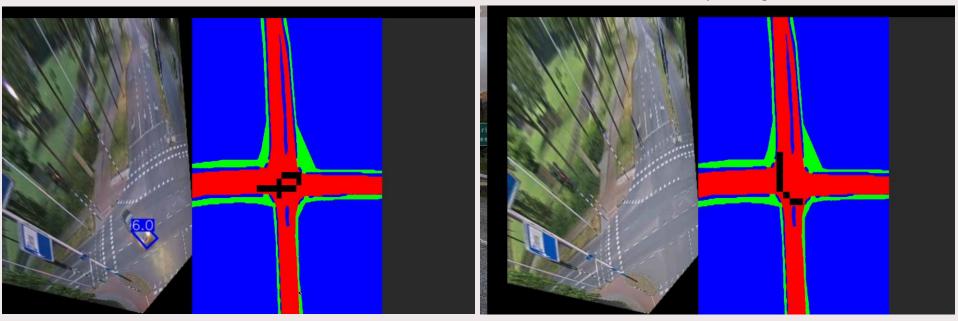
- Define anomaly that we are looking for with simple if-else statements
 - E.g. if agent.Type == "Car" and agent.PatchType == "Terrain" then "Anomaly: Car on Curb"
- Simulate synthetic trajectories
- Detect & Classify anomalies that are not learned
- Further explore causal relations (Direct Acyclic Graphs)



Anomalies

Donuts

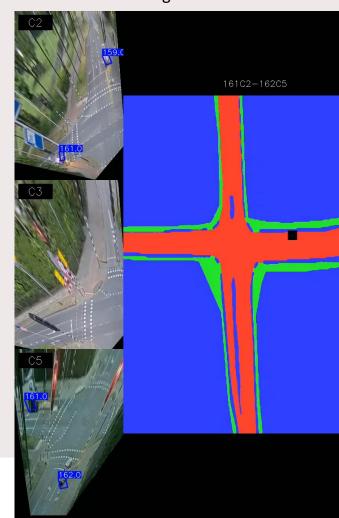
Jaywalking



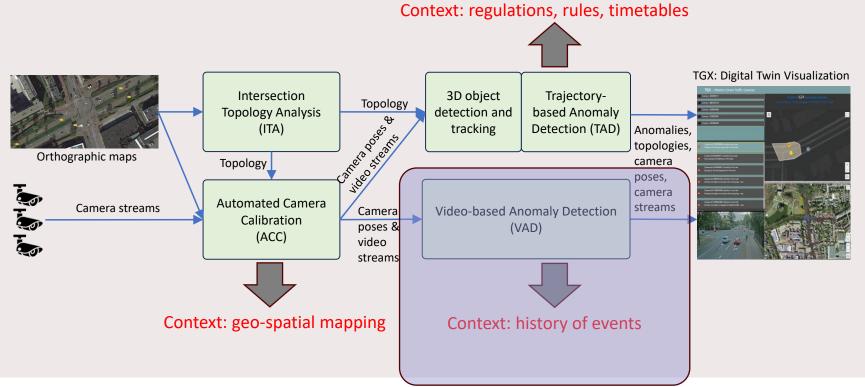
Anomalies

Biking on car lane

Wrong car turn



Architecture of SMART: geo-spatial anomaly detection system



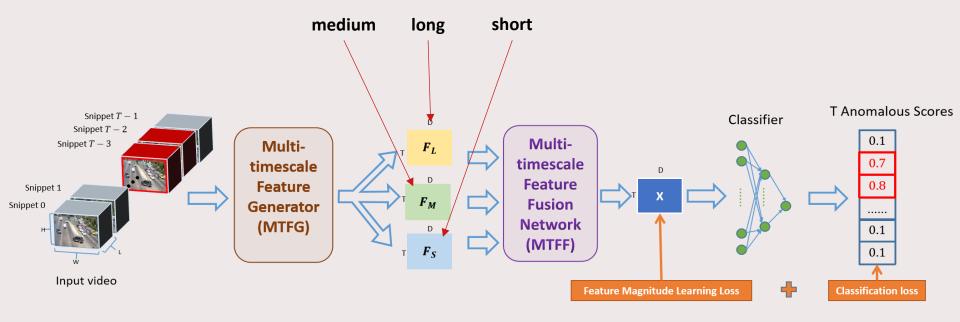
The Video Anomaly Dataset

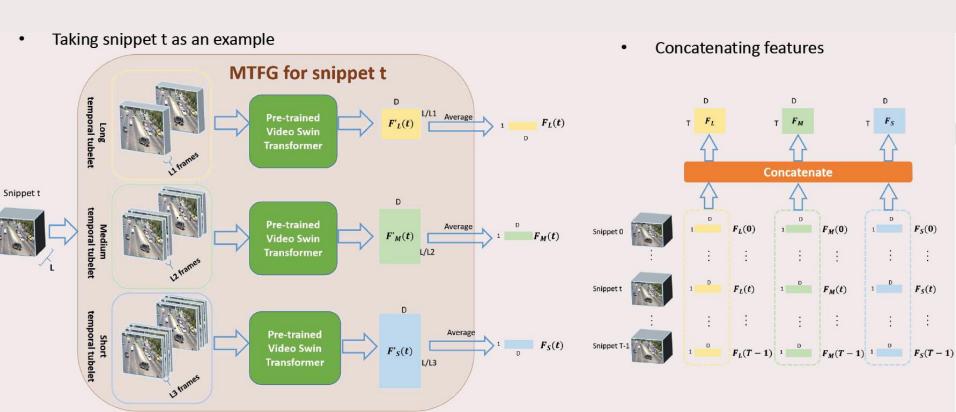
- 2,202 train and 389 test= 2,591 videos
- 30 fps and 320×240 pixels
- EMV=Enclosed Motor Vehicles (cars and trucks)
- VRU=Vulnerable Road Users (motorbikes, bikes, and pedestrians)

Class name	# Training	# Testing	Video sources
Normal	900	170	1, 2, 3
Dangerous Throwing	154	25	2
Littering	81	12	2
VRU vs VRU	85	14	1, 3
EMV vs EMV	149	23	1, 3
EMV vs VRU	150	28	1, 3
Abuse	48	2	1
Arrest	45	5	1
Arson	41	9	1
Assault	47	3	1
Burglary	87	13	1
Explosion	29	21	1
Fighting	45	5	1
Robbery	145	5	1
Shooting	27	23	1
Shoplifting	29	21	1
Stealing	95	5	1
Vandalism	45	5	1

Vision-based Anomaly Detection

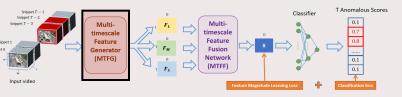
- 1. Anomalies can be long, medium and very short in time
- 2. Learn various-duration anomalies by three different sampling strategies





MTFG: Multi-timescale Spatio-temporal features

Vision-based Anomaly Detection



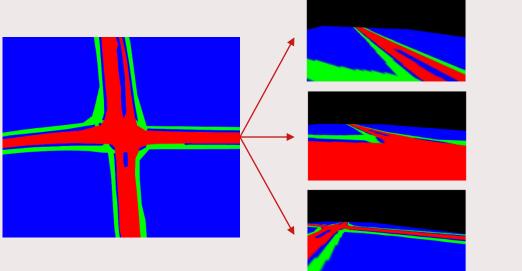
Examples of Video-based Anomaly Detection

Examples of Video-based Anomaly Detection

Discussion

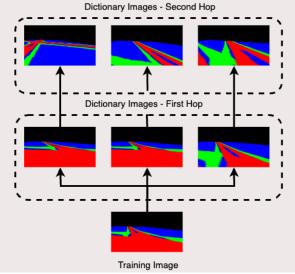
Data Generation Pipeline

Warp the semantically segmented BEV with virtual cameras by sampling *focal length, rotation angles* and *location*



Randomly select *training*, *testing* and *dictionary* images Structure the synthetic images in a graph

- Nodes = training/testing images
- Links = Top-20 most similar *dictionary* images

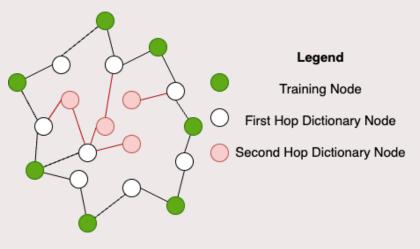


Data Generation Pipeline

A mini-batch is composed by sampling training/testing nodes and 10 of its dictionary nodes in the first or second hop

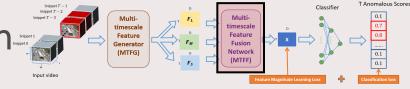
The dictionary nodes are shared between the *training/testing* graphs

Some nodes may share dictionary nodes in the first or second hop

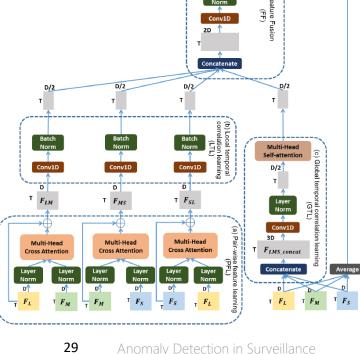


Reduced example of a mini-batch with 7 training nodes

Vision-based Anomaly Detection



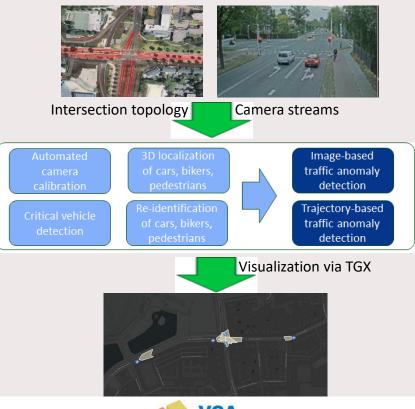
- Pair-wise Feature Learning (PFL): Cross attention of short-medium-long temporal features.
 Local Temporal Correlation Learning (LTL): Scaling pairwise fusions by their local temporal correlation.
 Global Temporal Correlation Learning (GTL): Scaling the features based on the global temporal correlations.
 - Feature Fusion (FF): Fusing features with a residual connection.



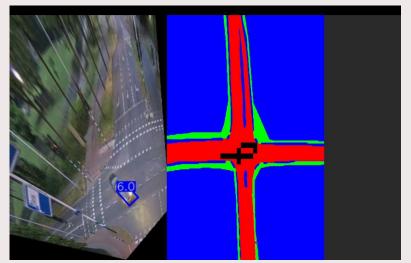
AI Detection of Traffic Anomalies

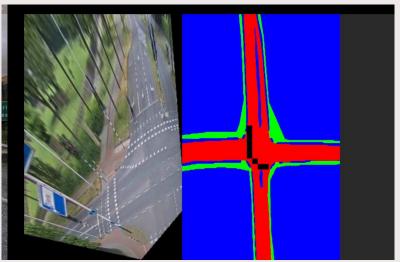
Real-time detection All actors: bicyclists, cars, pedestrians Detected anomaly types:

- Accidents
- Throwing and littering
- Illegal turning
- Opposite lane driving
- Zig zag driving
- Side lane parking
- Illegal crossing (biker, pedestrian)
- etc



Al Detection of Traffic Anomalies





SINTRA project: Multi-modal sensor analysis against - people trafficking,

- drugs smuggling,
- theft, intrusions

Vision-based people tracking in area: 2 pax

Simple fusion: Early detection of possible people trafficking in containers

